Modified Cholesky Factorizations in Interior-Point Algorithms for Linear Programming

نویسنده

  • Stephen J. Wright
چکیده

We investigate a modi ed Cholesky algorithm typical of those used in most interiorpoint codes for linear programming. Cholesky-based interior-point codes are popular for three reasons: their implementation requires only minimal changes to standard sparse Cholesky algorithms (allowing us to take full advantage of software written by specialists in that area); they tend to be more e cient than competing approaches that use alternative factorizations; and they perform robustly on most practical problems, yielding good interior-point steps even when the coe cient matrix of the main linear system to be solved for the step components is ill-conditioned. We investigate this surprisingly robust performance by using analytical tools from matrix perturbation theory and error analysis, illustrating our results with computational experiments. Finally, we point out the potential limitations of this approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation Issues in CSDP

CSDP is a software package that implements the XZ primal–dual interior point method for semidefinite programming. In this method there are a number of computationally intensive steps including the construction of the Schur complement matrix O, the factorization of O, multiplications and Cholesky factorizations of matrices of size n. Profiling shows that for different problems, each of these typ...

متن کامل

Preconditioning Indefinite Systems in Interior Point Methods for Optimization

Every Newton step in an interior-point method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless a...

متن کامل

A path-following infeasible interior-point algorithm for semidefinite programming

We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...

متن کامل

Solving Large-scale Linear Programs by Interior-point Methods under the Matlab Environment

In this paper, we describe our implementation of a primal-dual infeasible-interior-point algorithm for large-scale linear programming under the MATLAB 1 environment. The resulting software is called LIPSOL { Linear-programming Interior-Point SOLvers. LIPSOL is designed to take the advantages of MATLAB's sparse-matrix functions and external interface facilities, and of existing Fortran sparse Ch...

متن کامل

A robust and efficient proposal for solving linear systems arising in interior-point methods for linear programming

The computational burden of primal-dual interior point methods for linear programming relies on the computation of the search direction by solving one or more linear systems per iterations. The objective of this work is to study an efficient and robust way of solving these systems for large-scale sparse problems. Our proposal combines the use of the stable system and a hybrid iterative method w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1999